Selective breeding increases the frequency of a given set of genes, already present in a species, in order to better manifest specific, more advantageous - either nature or human chosen - traits.
Random mutations can occur when biological reproduction happens but unless extreme and radical - which often prove fatal for the offspring - are not relevant for the species in the immediate.
These principles are applicable to both plants and animals.
Now grafting takes a part of one plant - usually a small branch - uses another plant to provide the root system - usually something that grows much faster than the graft - and this process multiplies asexually the plant from which the branch was oroginally cut. No genes are carried over between the two plants.
This is valid to get a bunch of trees out of a single one in a very short time but it will not introduce new genes into the crop.
Quince trees are often used as root stock to graft other trees, like pear and apple. If the seeds from those grafted trees were to be sprouted, planted and nurtured to maturity, apples or pears would grow but of completely new varieties. The quince trees used to provide the root for grafting would provide zero genes to the new varieties.
Can you expand on why you consider grafting as a tool for genetic manipulation?
Selective breeding and grafting modified the genetics
Bananas all being clones
There’s no reason to separate the terms
Let’s analyse that.
Selective breeding increases the frequency of a given set of genes, already present in a species, in order to better manifest specific, more advantageous - either nature or human chosen - traits.
Random mutations can occur when biological reproduction happens but unless extreme and radical - which often prove fatal for the offspring - are not relevant for the species in the immediate.
These principles are applicable to both plants and animals.
Now grafting takes a part of one plant - usually a small branch - uses another plant to provide the root system - usually something that grows much faster than the graft - and this process multiplies asexually the plant from which the branch was oroginally cut. No genes are carried over between the two plants.
This is valid to get a bunch of trees out of a single one in a very short time but it will not introduce new genes into the crop.
Quince trees are often used as root stock to graft other trees, like pear and apple. If the seeds from those grafted trees were to be sprouted, planted and nurtured to maturity, apples or pears would grow but of completely new varieties. The quince trees used to provide the root for grafting would provide zero genes to the new varieties.
Can you expand on why you consider grafting as a tool for genetic manipulation?
Under normal circumstances new genes would be, but the new plant isn’t considered a new species (like tigons not being a species)
As in a quince tree cross polinate a pear tree or an apple tree?