• Sloan the Serval@pawb.social
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    1 year ago

    Well, one thing you can do is make sure to decommission the satellite constellation when it’s reached the end of its usable life by putting it back on an intercept course with Earth by either raising or lowering its orbit. Also, radio telescopes are actually a lot less sensitive to physical damage, as their receivers work very differently to that of a telescope operating in near infrared (like JWST) or visible light (like Hubble), and have more in common with a satellite dish used for communications.

    As for the lack of access to materials in a lagrange orbit, you wouldn’t actually need that, because you don’t actually have to construct anything during the mission. The various automated spacecraft you’d be sending to construct a planet-based telescope would instead be the telescope.

    Regardless, a radio telescope designed around using a constellation of lagrange point satellites would be that kind of uber-important mission, because such a massive radio telescope array would be able to “see” in a MUCH higher resolution compared to any planet-based telescopes, and potentially further as well. As far as we know, the visual range limit of such a telescope could be the information event horizon - JWST gets VERY close to that point already. Such a massive radio telescope could record radio data to that very information event horizon. And due to how the further out you look, the further back in time what you see is due to the speed of light over such vast distances, it would be able to record radio data from as far back as the very moment of the big bang, and in unprecedented detail.